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I. INTRODUCTION

The effects of fluid injection into the base region of a missile
or projectile are of interest to the Army. It is well known that injec-
tion of a fluid car decrease base drag and increase the vehicle range.
In some missile systems, it may be necessary to bleed off excess gases;
such injectants should be introduced into the base region in a manner
which will provide the best overall flight characteristics.

The tests discussed in this report were conducted for the Army Mis-
sile Command, Redstone Arsenal, Alabama. These tests were conducted in
April 1970 and were a part of a scries of experimental and theoretical
base flow studies with emphasis on fluid injectioi. into the base region.
Because of renewed Army interest in reduction of base drag through fluid
injection, these data have been reviewed and are now being published in
this report.

In this test program, base pressure measurements were obtained at
supersonic speeds with base injection. Different base bleed confijura-
tions were tested with and without simultaneous operation of a super-
sonic sustainer nczzle. Mass flow rates of both the bleed air and sus-
tainer air were varied.

IT. APPARATUS
A. Wind Tunnel

The tests were conducted in the Ballistic Research Laboratories'
Supersonic Wind Tunnel No. 1. Tunne! No. 1 is of the continuous flow,
closed circuit, variable density type and has a flexible nozzle for
obtaining Mach numbers from 1.5 to 5.0. The test section size is 13
inches wide by 15 inches high (33.0 by 38.1 centimetres) and is shown
in Figure 1 with the model installed.

B. Mcdel

The model was a tangent-ogive cylinder 2.5 inches (6.3% centimetres)
in diameter, six calibers long anu was supported by the strut which was
attached to the tunnel ceiling (again see Figure 1). Figure 2 is a
sketch of the model along with significant dimensions. Base bleed air
and sustainer nozzle air were supplied through passages in the support-
ing strut. The sustainer nozzle geometry is also shown in Figure 2 and
is a supersonic type nozzle with an exit Mach number of 2.71, The six
base bleed configurations and base pressure tap locations are shown in
Figure 3. The base bleed openings might be classified as the flat-
plate-orifice type.
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€. Auxiliary Air

Air to the sustainer nozzie was supplied from Compressor P:ant No. 2
which is designed to supply high pressure air to the Hypersonic Tunnel.
When operating Tunnel No. 1 (supersonic twanel), Plant No. Z can ve uti-
lized as an auxiliary air sup;ly. Air froc Plant No. 2 can be supplied
to Tunnel No. 1 at pressures greater tnan 300 psia (2068 kPa) .ai:lizing
two of the three available compressor units.

Base bleed air was supplied from the air storage sphere which is
normally used to repl.nish dry air to the wind tunrel circuits. Pres-
sure in the sphere is typically maintained at 70 to 90 psia (483 tc
621 kPa). Base bleed air could have been supplied from Plant No. 2, but
separate sources were used because part of the test program required
base bleed only; for this reason, operation of Plant No. 2 was not
required during these periods.

D, Instrumentation

Approximate locations of model base pressure orifices are shown in
Figure 3. Total and static pressures were measured in the base-bleed
chamber and total pressure was measured in the sustainer supply chamber
(see Figure 2). Pressur. orifices were connected to stainless steel
tubing of 0.058 inch (0.147 centimetre) o.d. by 0.008 inch (0.020 centi-
metre) wall which was routed through the supporting strut leading edge
cowling; the stainless tubing was then connected to 0.062 inch (9.157
centimetre) i.d. copper tubing which was routed to the pressure scanner.
Pressures were measured with Stathum absolute pressure transducers which
are linear to within % 0,25 percent of the full scale range. The pres-
sure scanner can utilize seven transducers and each transducer can be
opened to four ports giving a total capacity for measuring 28 pressures.
Tunnel supply pressure and the sustainer nozzle supply pressure were
measured with separate transducers because the scanner is limited to a
maximum pressure of 25 psia (172 kPa).

Electrical signals from the transducers were converted to digital
readings by an automatic data readout system. Data were tabulated with
a Flexowriter and punched on paper tape for computer processing.

The sustainer nozzle throat was utilized as a metering device for
measuring the mass flow rate through the sustainer. The base bleed
mass flow rate was measured by placing a metering venturi in the supply
line outside of the tunnel. Venturies with throat diameters of 0.140,
0.200, 0.350, and 0.500 inch (0.356, 0.508, 0.889, and 1.27 centimetres)
were available but only the two smaller venturies were used. Total
pressure and temperature upstream from the throat and static pressure
at the throat were measured. A Honeywell direct measuring recorder
was used for measuring the base bleed and sustainer air temperatures.
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ITI. PROCEDURES

A. Test Procedure

Tunnel supply pressure and temperature were set at the desired con-
ditions., The sustainer nozzle supply pressure was then adjusted to the
required level by monitoring the automatic readout dial indicators; this
pressure was then retained at a constant value while the base bleed air
supply pressure was set at different levels. The base bleed pressure
was set by monitoring the output for the outer probe of the base bleed
chamber total pressure rake (see Figure 2). At each combination of
pressure settings, all pressures and temperatures were recorded. Data
were obtained at Mach numbers 2.5, 3.0, 3.5 with corresponding Reynolds
numbers of 7.1 x 108, 7.8 x 106, and 8.0 x 10% based on model length.

; All data were obtained with the model attitude at zero degrees.

Total pressures upstream from the base-bleed mass-flow measuring
orifice and throat static pressures were monitored to insure that sonic
flow was maintained in the throat at all times. It was necessary to
maintain sonic flow so that the mass flow rates could be determined with
reasonable accuracy. If the flow at the throat was subsonic for a
4 desired test condition, a smaller venturi was installed in the supply
; line, or if the flow was sonic but the desired mass flow rate could not
be attained, a larger venturi was then installed.

B. Data Reduction Procedire

] A precision resistor is permanently attached to the pressure trans-
ducer electronics package which can easily be shunted across one leg of
[ the transducer strain-gage bridge. The resistance change caused by the
shunt is equivalent to that caused by a specific pressure change which
is determined during a bench calibration. During a test, the only cal-
ibration needed is a data system readout with the transducer shunted.
Transducer output is assumed to be linear, hence the raw data reading

is merely multiplied by a constant to obtain the pressure. Air supply
temperatures were measured using iron-constantan thermocouples and a
Honeywell-Brown direct temperature measuring instrument.

Bench tests were not conducted to determine the nozzle discharge
coefficient or the discharge coefficients for the metering Venturies.
Handbook values (reference 1) for smooth nozzles indicate that dis-
charge coefficients are typically 0.98 and may be as large as 0.995.
Mass flow rates for these tests were computed using the continuity equa-
tion for sonic flow at the throat and assuming the di.charge coefficient
to be 0,98,

1. Mechanical Engineers Handbook by Lionel S. Marks, M~7raw-Hill Book
Co., Ine., Sth Edition, New York, (1951).
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Data Accuracy: Pressure transducers are linear to within #* 0.25%
of the full scale output. Since pressures arc usually less than full
scale and small random instrumentation errors exist, it is estimated that
typical accuracy of pressure measurements is * 1,0%. Accuracy of temper-
ature measurements is vstimated to be of the same order as the pressure
measurements.

Accuracy of the mass flow calculation is dependent on the accuracy
of the temperature, pressure and discharge coefficient. A discharge co-
efficient accuracy of + 2.0 percent would seem to be a reasonable esti-
mate, hence the overall accuracy of mass flow rates should be within
%+ 4.0 percent,

IV. DISCUSSION

Variation of vressure across the base of the model was reasonably
3 constant for most tfiow situations. Figure 4 shows some of the larger
3 variations observed during the test program; the higher mass flow rates
of base bleed seemed to cause the greater variations. The mean value
of base pressure was not computed but the pressure at r/rb = 0.93 was

b typically average and hence this pressure was used in the plots of
Figures 5 to 7.

Variation of base pressure with base bleed and no injectien through
the supersonic nozzle is sh.wn in Figure 5a. The peak pressure for
each of the configurations increases with the area of the base bleed
opening. Insufficieni data were available to determine the Mach number
or velocity through the base blead openings but approximate calculations
show that at the peak pressure, the Mach number of the flow at exit was
typically greater than 0.5. This relatively high velocity indicates
that the base bleed air has sufficient momentum to start lowering the
base pressure through ejector type action. Figure S also suggests that
for small amounts of base bleed up to approximately mbb/m > 0.004, the

base pressure is independent of the base configuration. Figures 5b and
Sc are results similar to those of Figure 5a but show the effect of Mach
number on base pressure.

Figure 6 shows the effect of injection through the supersonic nozzle
on base pressure. Comparison of the results for configurations 2 and 6
shows that the geometry of base bleed opening does not have any notice-
able effect on base pressure provided there is no base bleed injectant.
The initial rise in base pressure is believed similar to that caused by
the base bleed because the supply pressure was not high enough to give
supersonic flow; as the supply pressure increased, flow became supersonic
and the ejector type action caused a sharp decrease in the base pressure.
As the supply pressure is increased further the base pressure hegins a
gradual rise; this pressure rise is believed caused by the jet plume
resulting from an underexpanded flow at the nozzle exit. With a high

10
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supply pressure, flow at the nozzle exit may be sufficiently underex-
panded that the resulting plume may cause separation of the boundary
layer upstream from the trailing edge corner. Boundary layer separa-
tion was not observed in these tests but the shadowgraph of Figure 8
shows a plume of sufficient size to affect the boundary layer on a
smaller base diameter such as a boattailed configuration.

EUR T TR BT e R

Figures 7a-f show the combined effects of base bleed and super-
sonic nozzle ir,ection; if the effects of these two modes of injection
1 were independent, the curves would be parallel. The curves of Figures
1 7a-f are not parallel but do show to some degree a parallel character
indicating to what extent the modes of injection affect the base pres-
sure independently.

5 No theoretical comparisons were made with the data but it is worth
noting that extensive work has been supported by the Army Missile Com-
mand in the area of axisymmetric base pressure in a supersonic free
stream with propulsive nozzle flows, A computer program for cumputing
base pressure for the conditions stated above was developed; results of
this work may be found in references 2, 3, and 4.

The trends of the experimental data are as one expects; that is,
low momentum injection (base bleed) increases the base pressure while
high momentum injection decreases the base pressure. It is well known
that base bleed type injection increases base pressure; that is to be
expected because the net amount of gas injected at low momentum will

o

2. A. L. Addy, "Analysis of the Axisymmetric Base-Pressure and Base-
Temperature Problem with Supersonic Interacting Freestream-Nozzle
Flows Based on the Flow Model of Korst, et al., Part I: A Computer
Program and Representative Results for Cylindrical Afterbodies,”
Report No. RD-TR-69-12, U. S. Army Missile Command, Redstone
Arsenal, Alabama (July 1969). AD 861434.

I i

3. A. L. Addy, "Analysis of the Axisymmetric Base-Pressure and Base-
Temperature Problem with Supersonic Interacting Freestream-Nozzle
Flows Based on the Flow Model of Korst, et al., Part II: A Com-
parigon and Correlation with Experiment for Cylindrical After-
bodies," Report No. RD-TR-69-13, U. S. Army Missile Command,
Redstone Arsenal, Alabama (December 1969). AD 8688965,

4. A. L. Addy, "Analysis of the Axisymmetric Base Pressure and Base-
Temperature Problem with Supersonic Interacting Freestream-Nozale
Flows Based on the Flow Model of Korst, et al., Part III: A Com-
putey Program and Representative Results for Cylindrieal, Boattailed,
or Flared Afterbodies," Report No. RD-TR-69-14, U. S. Army Missile
Command, Redstone Arsenal, Alabama (February 1970). AD 8758765,

11




QR L b

PTNONT 2

Ml

TTYE RS R AT

have to be accelerated sufficiently to negotiate the recompression.

This acceleration will require a momentum exchange along the shear layer
and a longer shear layer than for the case of no injection. A longer
shear layer means a smaller turning angle, a higher base pressure and
lower base drag. all air injected into the base region was at an ambi-
ent temperature of approximately 90° F (32° C) and no effects of heat
addition were measured. Addition of heat in the recirculating region
would increase the volume of the recirculating region, decrease the
turning angle of the external flow and result in a higher base pressure.
By the same reasoning, for a given mass rate of injection, a low molec-
ular weight gas would give a greater volume increase and hence a higher
base pressure than that for a high molecular weight gas.

Experimental results of reference 5 for hypersonic flow, laminar
boundary layer and low momentum injection show that base pressure cor-
relates with the parameter I,

The ratio of base pressure with injectant to the base pressure without
injectant varies nearly linearly with the above parameter I for pres-
sure ratios up to about 1.25. This correlation shows that the base
pressure increase is proportional to the rate of injected gas and in-
versely proportional to the square root of the molecular weight of in-
jectant.

High momentum injection is expected to decrease the base pressure
(see Figure 6) because this type of injection is enalogous to that
used in ejector systems which are used for obtaining low pressures nr
pumping fluids by the suction of a jet flow.

5. D. J. Collins, L. Lees, and A. Roshko, "Near Wake of a Hypersonic
Blunt Body with Mass Addition," AIAA Jowrmal, Vol. 8, No. 5, May
1970, pp. 833-842.

12
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V. CONCLUDING REMARKS

The effectiveness of base bleed in reducing drag decreases with
increasing mass flow; the base drag reaches a minimum for a given
amount of base bleed and then increases with increasing mass flow rates
provided the base configuration remains unchanged.

A greater reduction in base drag -an be attained by increasing
both the area of the bleed openings and the mass flow rate.

For moderate mass flow rates, supersonic injection lowers the
base pressure and hence increases base drag.

The independent effects of base bleed and supersonic injection
are qualitatively additive for simultaneous injection.

20 b e K
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LIST OF SYMBOLS

A Model cross section area
';'bb Base bleed mass flow rate
n'xj Supersonic nozzle mass flow rate
ﬁB.L. Boundary layer mass flow rate
. P, U, A
m ™
M, Free-Stream Mach numbex
M air Molecular weight of air
% Mi Molecular weight of injectant
: Pbb Total pressure in base bleed chamber, psia
Py Base pressure
P, Supersonic nozzle total pressure, psia
P, Tunnel free-stream static pressure
u, Tunnel free-stream velocity
u, Tunnel free-stream viscosity
Po Tunnel free-stream density
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